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ABSTRACT 

A general class of single-hidden layered, linear-in-the- 
parameters feedforward Artificial Neural Networks is 
proposed for processing band-limited signals in a multi- 
microphone sub-band adaptive speech enhancement 
scheme. The sub-band spacing within the adaptive 
speech enhancement system is set according to a 
published cochlear function. Comparative results 
achieved in simulation experiments demonstrate that the 
proposed sub-band scheme is capable of significantly 
outperforming conventional full-band and sub-band 
noise cancellation methods employing linear processing, 
in the presence of non-linear interference. 

1. INTRODUCTION 

Humans are capable of detecting and understanding 
speech at low Signal-to-Noise Ratios (SNR) without 
prior knowledge of the speech, the noise or the 
environment [ 11. In speech enhancement research, new 
ideas are often stimulated by a study of the human 
auditory system. An important and much studied 
property is that of the filterbank present in the cochlea, 
which splits incoming signals into a large number of 
band-limited signals prior to further processing. In 
practice, the use of sub-band based speech enhancement 
systems has been shown to give the important benefit of 
supporting adaptive diverse parallel processing in the 
sub-bands [3] [ 161. It allows signal features within the 
sub-bands, such as the noise power, the coherence 
between the in-band signals from multiple sensors and 
the convergence behaviour of an adaptive algorithm, to 
influence the subsequent processing within the 
respective frequency band. 

Classical speech enhancement methods based on full- 
band multi-microphone noise cancellation 
implementations [4] which attempt to model acoustic 
path transfer functions can produce excellent results in 
anechoic environments with localized sound radiators 
[S], however performance deteriorates in reverberant 
environments [2]. Multi-band processing has been found 
to be important in combating reverberation effects [3] 
[6]. Adaption is necessary to compensate for changing 
noise fields [7] due for example to, non-Gaussian 
sources, source/sensor motion, or time-varying acoustic 

paths. Multi-sensor methods are necessary to 
compensate for reverberation and speech/noise spectral 
overlap [ 31. 

In previous multi-band noise cancellation systems, 
filter-bank or transform methods are first employed to 
provide a set of contiguous sub-bands within which 
continuous time signals can be processed. The 
subsequent processing within each sub-band is 
performed using linear adaptive filters often using the 
Least Mean Squares (LMS) algorithm. Significant 
performance improvements have been demonstrated (in 
terms of error convergence speed and output SNR) over 
classical full-band Finite Impulse Response (FIR) filter 
based noise cancellers spacing for speech enhancement 
in both simulated and real reverberant enviromuents [2] 
[3] [8]. However, in cases where the acoustic path 
transfer functions to be modelled are not linear, the 
conventional linear adaptive filters will not be able to 
optimally cancel the non-linear interference. 
Additionally, acoustic signals of interest cannot 
generally be modeled as Gaussian processes (e.g., 
speech amplitude density functions are usually 
approximated by Laplacian or Gamma densities), and 
Knecht et al [14] have recently demonstrated 
performance improvements through the use of non- 
linear filtering in the full-band case. 

Over the past decade, there has been an increasing 
interest in the use of “biologically inpired” Artificial 
Neural Networks (ANNs) for solving complex real- 
world problems [9][10]. This is mainly due to their 
ability to effectively deal with non-linearity, non- 
stationarity and non-Gaussianity [lo]. The conventional 
feedforward neural networks include the category of 
multi-hidden layered, Multi-Layered Perceptron (MLP) 
type structures [9], and the single-hidden layered, 
Radial Basis Function [9], Volterra Neural Network 
(VNN) [l l] and newly developed Functionally 
Expanded Neural Network (FENN) [ 121 type structures. 
All have been shown to be capable of forming an 
arbitrarily close approximation to any continuous non- 
linear mapping. However, the multi-layered MLP type 
networks have highly non-linear-in-the-parameters 
structures, and require computationally expensive non- 
linear updating algorithms (such as back-propagation) 
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which are very slow and consequently less suitable for 
on-line adaptive applications 1121. On the other hand, 
the RE3F, VNN and FENN have linear-in-the- 
parameters structures giving the relative advantages of 
ease of analysis and rapid adaption. 

In this paper, we investigate the use of a class of 
general non-linear adaptive FIR type filters based on 
single hidden-layered linear-in-the-parameters ANNs, 
for processing the band-limited signals in a multi-band 
speech enhancement system. The spacing of the sub- 
bands within the adaptive speech enhancement scheme 
is set according to a published cochlear function. We 
show for a real speech signal corrupted with simulated 
non-linear interference that non-linear ANN based 
processing in the sub-bands can significantly enhance 
the performance of conventional multi-band speech 
enhancement systems. 

2. STRUCTURE OF ANN BASED ADAPTIVE 
NON-LINEAR FILTER 

The general structure of the proposed non-linear FIR 
type filter illustrated in Figure 1, is based on single- 
hidden layered, linear-in-the-parameters feedforward 
ANNs. It employs an input expander which transforms 
the n inputs [xl, . . . , x,,] (representing lagged values of 
the input signal x passed through a (n-l)& order 
tapped delay line) into a non-linear intermediate 
(hidden) space of increased dimension ,Y. The 
expanded input terms (termed the basis functions) are 
then weighted and linearly combined to form the 
adaptive filter output y . The overall mapping of the 
adaptive FIR filter is thus R ’ + p + R . The non- 
linear expansion model is completely general and can 
employ for example: 
ii) Any of the non-linear basis functions commonly 
employed in RBF neural networks [9], such as the: 
(a) Thin-plate spline basis functions of the n inputs: 

f;(Ui) = ui2log(u;) (2.1) 
where ui = JIx - till for i=l,..., N ; x=[xl . . xn] is the 
input vector, f,(.) are the Al non-linear basis functions of 
the inputs, 11 . I] denotes the Euclidean norm, c, are the 
centres of the basis functions, and A; is the number of 
RBF centres. The centres are some fixed points in the n- 
dimensional input space, which they must sample. 

(b) The multi-quadratic activation functions: 
J(Ui) = (Ui2+02)'n (2.2) 

where o is a real constant usually termed the width of 
the basis function. 
(c) The inverse multi-quadratic functions: 

J(Ui) = 1/(Uf+02)1'2 (2.3) 
(d) And the most widely used Gaussian basis 

functions: 
fi(Ui) = eXp(-Ui'lO*) (2.4) 

(ii) The sigmoidal basis functions employed in MLP 
networks [ lo] : 

J(x) = tan/t(x) (2.5) 
(iii) The Volterra (polynomial) expansion employed in 
the hidden layer of the conventional VNN [ 1 l] : 

f(X) = [ 1 , Xjl 9 Xii Xi* ) * l l ) Xii Xi2.. .Xik ] (2.6) 
for il, i2, . . . . ik = l,..., n; ad f(.)=V; .hl. The 

above represents a k-th order polynomial expansion of 
the n inputs. 
(iv) A hybrid functional expansion employed in a newly 
developed Functionally Expanded Neural Network 

0 WI: 
f(X) = [l, X, sin(ix), cos(ix), XjSin(X& 

XjCOS(Xk), XilXi* , n * * , XilXi*...Xik ] (2.7) 
for i=1,2,3; j#?tand j&=1,..,, n ; il#i2 ,..., #ik, 

and il, i2, . . . . ik = l,..., n. The above expansion 
comprises a combination of sigmoidal shaped, Gaussian 
shaped and polynomial subset activation functions. 
An additional benefit of employing the FENN’s 
functional expansion model (like the VNN’s polynomial 
expansion) is that the use of the original network inputs 
within the expansion model, also enables efficient 
modeling of linear dynamical transfer functions [ 121. 
2.1 Adaptation Algorithms 

(1) Compute the filter output at time k, as 

YOG=F~QWW (2.8) 
where F(k) defines the [iV,l] hidden layer vector 
comprising the enhanced input functions: 

W=[flN fzO...fdNIT 
where f i(k), i=l, . . . . N represent the basis functions 
described above, superscript T denotes vector transpose, 
and W(k-1) is the [N, l] filter weight vector given by: 

w(k-1) = [ w&l) w&-l). . . Wr&-l)]T 
(2) The output error for the filter output is: 

where d(k) is the desired or reference signal. The 
Mean Squared Error (MSE) is therefore (where E(.) 
denotes the expectation operator and T denotes matrix I 
transpose): 
E(e(k)‘) = E(d(k)‘) - 2W(k-l)T E(d(k)FQ) + 

W(k-l)TE(F(k)F(k)T ) W(k-1) (2.10) 
The corresponding minimum MSE (MMSE) for the 
ANN based filter can thus be readily written as [ 121 
(with superscript -1 denoting matrix inverse and 
assuming that the autocorrelation matrix E(F(k)FOT ) 
is non-singular): 
MMSE = E(d(k)*) - 

WWWNT WWOT I-’ WOWO) (2.11) 
which includes as a special case the best linear (Wiener) 
MMSE for FQ=[xi (k) . . . x, (k)] T. The advantage of this 
particular non-linear filter structure is that linear 
adaptive filter theory can be readily applied for on-line 
adaptation. 

The above MSE expression (2.10) guarantees that there 
will be no local minima, since the MSE is a quadratic 
function of the filter weights W. Fast and certain 
convergence may be obtained in practice by use of 
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conventional stochastic gradient LMS type or faster but 
computationally more expensive least squares based 
RLS type adaptation algorithms, all with well 
established convergence properties. Other 
computationally efficient Fast RLS (FRLS) type 
algorithms and recently reported class of algorithms 
linking the LMS and RLS can also be readily employed 
to adapt the ANN based filter [ 121. 

Thus, once the full expansion model at the single 
hidden layer of the ANN based filter has been specified, 
any of the above algorithms can then be used to provide 
an efficient means for real time adaptation of the filter 
weights. This will give these non-linear FIR filters a 
significant advantage over multi-layered (MLP type) 
neural network based filters [ 141 recursive applications. 

3. SUB-BAND SCHEME BASED ON 
COCHLEAR MODELING 

In previous work [3 j[ 171, the sub-band filters within a 
multi-microphone sub-band adaptive (MMSBA) speech 
enhancement system illustrated in Figure 1, were spaced 
linearly in the frequency domain. The human cochlea, 
which evolved to deal with all sounds available to the 
human ear, has been modeled by Ghitza [1] who 
proposed use of the logarithm function for 
approximating the cochlear distribution of filters. 
However, Greenwood [ 151 has presented the following 
more accurate function for the spacing of the filters in 
the mammalian cochlea: 

F(x) = A(10” -k) Hz (3.1) 

where x is the proportional distance from 0 to 1 along 
the cochlear membrane, A, a and Ic: are constants based 
on empirical knowledge of the cochlea, and F(x) are the 
upper and lower cut-off frequencies for each filter 
obtained by the limiting value of x. For the human 
cochlea, values of A=l65.4, a=2.1 and k=O.88 are used, 
and this is confirmed by Allen [ 161. The number of 
filters within the cochlear filterbank is not accurately 
known, and different researchers have suggested various 
numbers of filters within their models. In this work, the 
sub-bands are achieved by modifying the spectra of the 
FFT (or DCT) of the input signals, and the number of 
filters is therefore limited by the size of the FFT. 

4. SIMULATION RESULTS 

A multi-band version of the classical noise cancellation 
system is illustrated in Figure 2, where the processed 
signal e(k) represents the sum of the errors between the 
band-limited primary signal and the output of the 
adaptive filter within each Sub-Band Processing (SBP) 
block. The complete system was implemented in 
MATLAB. The filter-bank was realized using the real- 
valued Discrete Cosine Transform @CT) method. The 
sub-bands were distributed according to the cochlear 
function illustrated in equation 3.1. 

The desired signal at the primary channel was a real 
anechoic speech signal s(k) sampled at lOkHz, and the 
reference noise signal was n(k) = 0.285 sin(2rrlOOOk). 
This noise was passed through a non-linear transfer 
function to produce the correlated noise signal n’(k): 
n’(k) = 0.3n(k) + 0.6n(k-1)2 + 0.9n(k-2)3 - 0.6n(k-3)* 

-0.3n(k-4) 

for addition to the speech in the primary channel. The 
above transfer function was arbitrarily chosen in order 
to provide a test case with a strong non-linearity. The 
SNR at the primary input was approximately -1.4dB. 
Ten thousand samples (representing one second) of the 
reference signal n(k) and the primary signal s(k)+n’(k) 
were used. 

The enhancement performance of the conventional full- 
band linear FIR (FBLFIR) based noise canceller was 
then compared with that of the multi-band linear FIR 
(MBLFIR) based noise canceller and the proposed 
multi-band non-linear FIR (MBNLFIR) based noise 
canceller. The input expansion model within the non- 
linear FIR filter employed for the SBP, was chosen to 
comprise the Volterra Series expansion model (2.6) 
employing a truncated 2nd order polynomial expansion 
of the filter inputs. The exponentially weighted RLS 
algorithm was used for adapting the weight coefficients 
of all the noise cancellers. 

In order to make the comparisons as fair as possible, an 
attempt was made to balance the computational 
complexity of the three algorithms. The order of the 
FBLFIR filter was set to 84. For this demonstration, the 
number of sub-bands in the MBLFIR system was set to 
four and the order of the linear FIR filter within each 
band was thus chosen as 21. In the case of the 
MBNLFIR system with 4 sub-bands, the order of the 
non-linear VNN based FIR filter within each band was 
set to 7. A truncated 2nd order polynomial expansion of 
the sub-band NLFIR filter inputs was employed 
comprising the actual sub-band filter inputs, their 
square terms and 2nd order cross-product terms, which 
resulted in a total of 21 terms (basis functions). 

The Mean Squared Error (MSE) achieved by the various 
noise cancellers over the last nine and a half thousand 
samples (allowing the first five hundred samples for 
convergence) is compared in Table 1. The SNR 
im rovements are also shown in arenthesis. 

R 

Table 1: Performance comparison of various Adaptive 
Noise Cancellers. 

As can be seen from Table 1, for this test case the use of 
a MBLFIR system gives similar performance in 
cancelling the non-linear interference compared to the 
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conventional FBLFIR filter. However, the use of the 
proposed MBNLFIR system can be seen to produce a 
much greater performance increment over the MBLFIR 
system. Informal listening tests also showed the 
MBNLFIR processed speech to be both enhanced in 
SNR and of significantly better perceived quality than 
that obtained by the other methods. 

5. CONCLUSIONS 

A class of general ANN based adaptive non-linear FIR 
type filters has been presented together with the 
adaptation algorithms employed in a sub-band adaptive 
speech enhancement scheme which is based 
conceptually on the human auditory system. Initial 
comparative results achieved in simulation experiments 
using highly non-linear distortion, demonstrate that the 
use of ANN based non-linear filters within a multi- 
band noise cancellation system can significantly 
enhance performance compared to the conventional 
linear filtering based multi-band and full-band noise 
cancellers. The superior performance of the MBNLFIR 
system is due to the use of non-linear ANN based 
processing within the sub-bands, which enables a more 
efficient modeling of the non-linear noise transfer 
function. Furthermore, for the case study considered in 
this paper the complexity of the MBNLFIR system was 
forced to be comparable to that of the MBLFIR system, 
and it can be further reduced by employing for example, 
a self-structuring LMS type algorithm. Note that 
although a particular simulated non-linear noise transfer 
function has been chosen for the case study, in practice, 
any non-linear dynamical transfer function can be 
efficiently modelled using the MBNLFIR approach, 
since all the ANN based non-linear expansion models 
employed in the proposed adaptive non-linear filters are 
universal approximators [ 121. Current experiments are 
using anechoic speech signals corrupted with realistic 
reverberated noises using both linear and non-linear 
sub-band distributions in order to further investigate the 
performance of the proposed MBNLFIR noise canceller. 
Initial results have been very encouraging and will be 
reported elsewhere. 
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I Input Expansion Model 
I 

Filter Outpuf ; 

Figure 1: General structure of the proposed ANN Based 
Adaptive non-linear Filter 

SBP=S~RoCe~ 

Figure 2: The multi-baud version of the classical noise 
canceller 
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