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ABSTRACT 

Each subband in a multirate acoustic echo canceller has 
different statistical properties. As there is a wide range 
of adaptive filters to choose with different cost / 
performance trade-offs, it is important to target 
computational resources intelligently depending on the 
perceptual contribution of each subband in the overall 
error residual. This results in the scenario of a 
heterogeneous AEC. For this optimisation problem, both 
a pertinent methodology and reliable source data 
through comprehensive benchmarking are required. 
This paper discusses some of the methodological issues 
raised by AF benchmarking in subbands. 

1. INTRODUCTION 

Multirate DSP provides a successful strategy for 
decomposing the computationally intensive problem of 
an Acoustic Echo Canceller (AEC) for hands-free 
telephony. The speaker and microphone signals (x[m], 
y[m]) are decomposed using an analysis filterbank into 
N integer-spaced subbands allied to N subband Adaptive 
Filters @F’s). Their output is recombined in a synthesis 
filterbank to give the error residual e[m]. Principal 
benelits are (i) the computational cost is l/N relative to 
the fullband counterpart and (ii) subband spectra are 
relatively ‘white’ compared to the fullband giving 
improved AF convergence. Requirements for the 
analysis and synthesis filterbanks are that they should 
have low cost, delay and phase distortion (to maintain 
signal fidelity). Additionally, they should minimise 
subband transition widths and overlap (to eliminate 
inter-band aliasing without spectral nulls): these 
requirements are satisfied by the novel polyphase- 
allpass QMF filterbank scheme incorporating transition 
region notches developed at Imperial College [I]. 

The next logical challenge in this project (EPSRC 
GR/K48693) is to optimise the subband AF’s. Beyond 
the basic NLMS algorithm, there is a diversity of higher 
complexity / performance algorithms that arc potential 
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candidates; contrasting philosophies are exemplified by 
[2] [3] [4]. Recent work at Loughborough has also 
produced some new low-cost pre-whitened NLMS- 
variants that display promising results for implementing 
AEC’s [5] [6] [7]. To this end, a design tool is under 
development that assists in determining which AF is 
best for which subband. Two factors of a multirate AEC 
hint at heterogeneity. Firstly, the statistics of each 
subband is unique implying a subband-specific 
performance bias for certain AF’s over others: the 
lowest frequency subband is characterised by a 
harmonic signal content in contrast to fricative noise 
bursts in the highest frequency subband. Secondly, 
given the l/f spectrum of speech, the perceptual 
weighting of each subband in elm] has a roll-off with 
increasing frequency. 

2. METHODOLOGY 

2.1. On Asking the Right Question 

ERLE = 1010g,,,(E[y[m]2]/E[e[m]2]) (1) 

One of the most important design variables in an AEC 
implementation is the desired performance criterion, 
usually related to the Error Return Loss Enhancement 
(ERLE) of eqn. (1). System distance is not an option 
because the impulse response of the echo path is 
difficult to determine a priori with accuracy. A popular 
measure is the convergence time to a particular ERLE 
value. Given such a quantity, say d, which AEC 
architecture is the most efficient? However, this 
question raises the higher-level issue of whether the 
basis for such a pre-emptive election of d is robust. This 
is because d equates to the subjective level of 
disturbance caused to the far-end speaker, rather than an 
objective metric of speech intelligibility that must be 
satisfied. 

Arbitrariness in the selection of d is undesirable. 
Conceivably, a slight sacrifice in d may yield a much 
more effcicnt AEC, or d may tend towards an 
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asymptotic limit (e.g. the additive noise floor). Though 
an AEC is optimal for a certain value of d, it may be 
possible to make computational savings without 
degrading significantly the perceived AEC quality. By 
transposing the optimisation problem to a higher level, 
optimal AEC architecture (and its associated 
computational cost) becomes a function of d allowing 
greater rationality in the AEC design process. 
Therefore, this objective is dominant in our 
benchmarking methodology. 

2.2. Optimising to Mean ERLE 

One of the problems in determining ERLE convergence 
time is that speech is non-stationary and the consequent 
(block segmented) ERLE envelope from an AEC has a 
wide dynamic range. For instance, additive noise during 
the short silences in an utterance can yield an 
instantaneous negative ERLE. However, if a stationary 
excitation signal such as USASI noise is used, which 
has a speech-like spectral envelope, the ERLE envelope 
displays better convergence properties more amenable to 
analysis. A problem with signals of this type is that they 
ignore the non-stationary transient behaviour inherent 
to natural human speech by which AEC benchmarking 
ought to proceed. 

Our work follows such an approach and is facilitated by 
the FREETEL database which comprises a phonetically 
balanced set of (x[m], y[m]) speaker microphone (SM) 
pairs taken across a comprehensive range of 
environments and talkers. In the light of the problems 
with other benchmarks, mean ERLE across each SM 
pair provides an attractive alternative for the following 
reasons: 

0’ A single intuitive figure represents the total echo 
power reaching the far end speaker. 

l It encapsulates AF convergence, misadjustment and 
tracking properties (for a non-stationary echo path). 

. Dimensionality of the optimisation problem is 
minimised. 

An anticipated refinement to mean ERLE is to integrate 
some form of auditory model in order to arrive at a 
perceptual benchmark of echo volume. 

2.3. Factorising the Benchmarking Process 

For reliable results it is desirable to benchmark the 
performance of a particular AEC architecture by 
analysing the ensemble statistics of a large number of 
SM pairs to smooth out individual talker / environment 
peculiarities. However, a problem for a heterogeneous 
AEC is that for K AF prototypes and N subbands, there 
are KN potential architectures, leading to an intractable 
number of simulations even if K and N arc low (e.g. 

K>lO, N=4). However, as each subband AF is 
independent and subbands have negligible cross- 
correlation, only K simulation runs are required, each 
generating N couplets of accumulated y[m] and e[m] 

powers. 

To compute mean ERLE for any of the K’v potential 
architectures, the pertinent subset of N couplets from the 
resulting set (size KN couplets) are summed and then 
applied to eqn. (1). This process has insignificant 
overheads in comparison to a complete simulation of a 
particular architecture through FBEETEL. Different 
QMF depths are logged in the range NE ( 1,2,4,8,16} to 
maximise the diversity of AEC architectures available 
for solving the optimisation problem: N, too, is an 
important AEC design variable. In consequence, AEC 
architectural optimisation is decoupled from the 
requirement for time-consuming and repetitive 
simulations. 

3. A BENCHMARKING EXPERIMENT 

3.1. Method 

An initial step towards fully automated AEC 
benchmarking along these principles was to investigate 
the performance of one of the new pre-whitened NLMS 
variants developed at Loughborough [5] with 
conventional NLMS. As the extra overheads in [5] are 
negligible, computational costs are assumed to be 
identical. The primary purpose was to validate the new 
algorithm with actual speech in support of this research. 
Secondly, it raises the question of how to integrate a set 
of mean ERLEs into a single benchmark (say B). As the 
human ear has a logarithmic perception of audio power, 
an intuitive ‘first-cut’ approach is to compute B (dB) as 
the mean of mean ERLEs, as expressed in dB’s. 

A subset of the FREETEL database was chosen 
comprising 128 single-talk (i.e. no near-end speaker 
activity) SM pairs in an acoustic enclosure with an 
impulse response equivalent to 512 taps at fV=8kHz. 
NLMS was simulated at three different stepsizes of 
y,={O.l, 0.3, 1 .O} over 3 QMF filterbank depths with 
NE { 1, 2, 4). The new technique [5] was tested over the 
same range with the additional parameter of a predictor 
stcpsize pL2=( leA, leMs... le-“J which has the default 
order of 2: higher orders do not yield a significant 
performance improvement [5]. Hence the number of 
candidate AF’s was K=3Q. 

3.2. Interpreting the Results 

Figs. 1 to 7 plot B as a function of three variables pl, p2 
and N. The first noticeable feature is the absence of 
results for p2=(le-4...1e-7}. This is because predictor 
adaptation noise [5] causes instability in one or more of 
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the SM pair simulations. In the fullband case of Fig. 1, 
pl=0.3, p2=le-‘0 yields slightly superior results to 
NLMS with pI=l.O. Additionally, a stepsize of p.i=O. 1 is 
shown to be inferior to the other values of pi={ 1.0, 0.3) 
which share similar optimality. With pi=l.O, the single 
value of p2=le-” alone yields stability. The best stepsize 
appears to bc p,=l.O with a slender case for using [5] 
instead of NLMS. 

In the N=2 case of Figs. 2 and 3, a large improvement of 
about +2.5dB in B over Fig. 1 is evident, probably due 
to the whitening effect of a subband decomposition. 
Again, the optimal NLMS stepsize is p,=l.O with both 
p,=(O.3, 0.1) significantly inferior. With ~,=(0.3, O.l}, 
it can be seen that B has a perceptible maximum in 
subband #l at p2=le-” indicating this to be an optimal 
predictor stepsize value. The N=4 case of Figs. 4 to 7 
yields some interesting results. The optimal value is 
pi=l.O for subband #l and (in the region of) pi=O.3 for 
the higher subbands. In subband #2, there is stronger 
evidence for a performance improvement of [5] at 
p,=O.3, p2=1e-* over NLMS than in any other graphs, 
though only of the order of +0.5dB. 

3.3. Conclusion 

The variation of optimal pl with subband# indicates the 
utility, if NLMS is to be deployed, of an adaptive 
stepsize. Other possible augmentations are exponential 
coefficient weighting [S] or adaptive tap-assignment 191. 
Unfortunately, the case for [5] over NLMS is unproven 
and further analysis and simulation is underway 
presently to give a greater insight. However, the validity 
of the ‘mean-of-means’ benchmark B is supported by 
the evidence of listening tests when sample SM pairs are 
played back through the contrasting AEC architectures. 

4. FUTURE WORK 

A satisfactory benchmarking methodology is established 
which decouples simulation from optimisation with a 
consequent reduction in computational overhead. 
Concurrently, the methodology is framed in the correct 
context by seeking to solve optimal multirate AEC 
architecture as a function of fullband B. The next step is 
to include as wide a range of candidate AF’s in the 
simulation stage as feasible and to develop a software 
tool for solving the multirate AEC architectural 
optimisation problem. 
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6. RESULTS 
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